
SOP-GPU Documentation
Release 2.0

Artem Zhmurov Andrey Alekseenko
Olga Kononova Valeri Barsegov

September 12, 2016

Contents

1 Self-Organized Polymer model 3
1.1 Method . 3
1.2 Benchmark simulations . 5

2 Generation of pseudo-random numbers on graphics processors 7
2.1 Method . 7
2.2 Benchmark simulations . 8

3 Using SOP-GPU program 11
3.1 General output . 11
3.2 Hydrodynamic interactions . 12
3.3 Pulling simulations . 13
3.4 Plane-pulling simulations . 13
3.5 Force indentation simulations . 13
3.6 Heating simulations . 15

4 Units 17

5 Topology 19
5.1 Old sop-top utility . 19
5.2 New sop-top (sop-top2) utility . 19
5.3 Additional covalent bonds . 21
5.4 Topology file . 21
5.5 Parameter for the topology creation . 23

6 Input parameters file 25
6.1 General features . 25
6.2 Device parameters . 25
6.3 Structure parameters . 26
6.4 General simulation parameters . 27
6.5 Force-field parameters . 27
6.6 Pairs lists parameters . 29
6.7 Hydrodynamic interactions parameters . 30
6.8 Pulling parameters . 31
6.9 Force indentation parameters . 33
6.10 Heating parameters . 38
6.11 Output parameters . 38

Bibliography 41

i

ii

SOP-GPU Documentation, Release 2.0

The SOP-GPU package, where SOP stands for the Self Orginized Polymer Model fully implemented on a GPU, is a
scientific software package designed to perform Langevin Dynamics Simulations of the mechanical or thermal unfold-
ing, and mechanical pulling/indentation of large biomolecular systems in the experimental subsecond (millisecond-to-
second) timescale. The SOP-GPU package utilizes the 𝐶𝛼 and 𝐶𝛼-𝐶𝛽 based coarse-grained description of proteins
combined with computational power of modern Graphics Processing Units (GPUs).

Download SOP-GPU package; View code in repository

Contents 1

https://github.com/BarsegovGroup/SOP-GPU/archive/master.zip
https://github.com/BarsegovGroup/SOP-GPU

SOP-GPU Documentation, Release 2.0

2 Contents

Chapter 1

Self-Organized Polymer model

1.1 Method

In the structure-based Self-Organized Polymer (SOP) model, each amino acid residue is usually represented by a single
interaction center described by the corresponding 𝐶𝛼-atom, or two interaction centers described by the corresponding
𝐶𝛼 and 𝐶𝛽 atoms. In the first case the protein backbone is represented by a collection of the 𝐶𝛼 −𝐶𝛼 covalent bonds.
In the second case, backbone atoms are replaced by 𝐶𝛼 bead and side-chain atoms are replaced by one 𝐶𝛽 bead,
connected covalently to the 𝐶𝛼 bead of the same amino acid. The coarse-graining procedure with one interaction
center representating each residue is illustrated on Figure 1. The potential energy function of a protein conformation
𝑈𝑆𝑂𝑃 is specified in terms of the coordinates of the 𝐶𝛼 and 𝐶𝛽-beads {𝑟𝑖} = 𝑟1, 𝑟2, . . . , 𝑟𝑁 , where 𝑁 is the total
number of beads in coarse-grained model. 𝑈𝑆𝑂𝑃 is given by [Hyeon2006], [Mickler2007]:

𝑈𝑆𝑂𝑃 = 𝑈𝐹𝐸𝑁𝐸 + 𝑈𝐴𝑇𝑇
𝑁𝐵 + 𝑈𝑅𝐸𝑃

𝑁𝐵 . (1.1)

Eq. (1.1), the first term is the finite extensible nonlinear elastic (FENE) potential:

𝑈𝐹𝐸𝑁𝐸 = −
∑︁

𝑐𝑜𝑣𝑎𝑙𝑒𝑛𝑡

𝑘𝑅0

2
log

(︃
1 −

(𝑟𝑖𝑗 − 𝑟0𝑖𝑗)
2

𝑅2
0

)︃
. (1.2)

Here, 𝑘 = 14 N/m is the spring constant, and 𝑅0 = 2.0 Å is the tolerance to the change of the covalent bond length.
The FENE potential describes the backbone chain connectivity (𝐶𝛼 − 𝐶𝛼), side-chain connectivity (𝐶𝛼 − 𝐶𝛽) and
other covalent links (e.g. disulfide bonds). The distance between the particles (𝐶𝛼 − 𝐶𝛼 or 𝐶𝛼 − 𝐶𝛽) 𝑖 and 𝑗, is 𝑟𝑖𝑗 ,
and 𝑟0𝑖𝑗 is its value in the native structure. The summation (Σ𝑏𝑜𝑛𝑑𝑠) is performed over all pairs of beads 𝑖 and 𝑗 that
are covalently bonded.

To account for the non-covalent (non-bonded) interactions that stabilize the native state, the Lennard-Jones potential
is used:

𝑈𝐴𝑇𝑇
𝑁𝐵 =

∑︁
𝑛𝑎𝑡𝑖𝑣𝑒

𝜀ℎ

⎡⎣(︃𝑟0𝑖𝑗
𝑟𝑖𝑗

)︃12

− 2

(︃
𝑟0𝑖𝑗
𝑟𝑖𝑗

)︃6
⎤⎦ . (1.3)

Here, the 𝑟𝑖𝑗 is the distance between two beads 𝑖 and 𝑗 and 𝑟0𝑖𝑗 is the equilibrium distance taken from the initial
structure. The value of 𝜀ℎ quantifies the strength of the non-bonded interactions. The summation

∑︀
𝑛𝑎𝑡𝑖𝑣𝑒 goes over

all beads 𝑖 and 𝑗 that are assumed forming native contacts. The definition of the native contact can vary, the most
general definition follows. If the two be beads 𝑖 and 𝑗 are separated by more than 2 covalent bonds and 𝑟𝑖𝑗 < 𝑅𝐶

then they form native contact. The typical cut-off distances are 𝑅𝐶 = 8.0 Å for 𝐶𝛼 − 𝐶𝛼 and 𝐶𝛼 − 𝐶𝛽 contacts and
𝑅𝐶 = 5.2 Å for 𝐶𝛽 − 𝐶𝛽 bonds. The value of 𝜀ℎ quantifies the strength of the non-bonded interactions and sets the
energy scale. This parameter can be estimated based on the results of all-atom MD simulations.

3

SOP-GPU Documentation, Release 2.0

The non-native (non-bonded) interactions are treated as repulsive:

𝑈𝑅𝐸𝑃
𝑁𝐵 =

∑︁
𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒

𝜀𝑙

(︂
𝜎𝑙

𝑟𝑖𝑗

)︂6

(1.4)

In Eq. (1.4), the values for the parameters are 𝜀𝑙 = 1 kcal/mol and 𝜎𝑙 = 3.8 Å. These define the strength and the range
of the repulsion.

The dynamics of the system is obtained by solving numerically the Langevin equations of motion for each particle
position 𝑟𝑖 in the over-damped limit:

𝜉
𝑑𝑟𝑖
𝑑𝑡

= −𝜕𝑈𝑖(𝑟𝑖)

𝜕𝑟𝑖
+ 𝑔𝑖(𝑡) (1.5)

In Eq. (1.5), 𝑈𝑖(𝑟𝑖) is the total potential energy, which accounts for all the biomolecular interactions between the
particles in the molecule (𝑈𝑆𝑂𝑃 ; see Eq. (1.1)). It also includes interactions of particles with the indenting object
(𝑈𝑡𝑖𝑝; see Eq. (3.7)) and surface particles in indentation regime (see Section Force indentation simulations below) and
external force 𝑓∆𝑋 in pulling regime. Also, in Eq. (1.5) 𝐺𝑖(𝑡) is the Gaussian distributed zero-average random force,
and 𝜉 is the friction coefficient [Zhmurov2010] [Kononova2013a] .

Figure 1: Coarse-graining procedure for constructing a Self Organized Polymer (SOP) model of a polypeptide chain.
Panel A exemplifies coarse-graining of the atomic structure of the 𝛼𝛽-tubulin dimer – the structural unit of the mi-
crotubule cylinder. The amino acid residues are replaced by single interaction centers (spherical beads) with the
coordinates of the 𝐶𝛼-atoms (represented by the black circles). Four representative circles are shown to exemplify
the coarse-graining process. Consequently, the protein backbone is replaced by a collection of the 𝐶𝛼 − 𝐶𝛼 covalent
bonds with the bond distance of 3.8 Å. Panel B depicts the results of coarse-graining of a small fragment of micro-
tubule cylinder. Four identical copies of the tubulin dimer structure, coarse-grained as described in panel A, form a
𝐶𝛼-based model of the fragment.

4 Chapter 1. Self-Organized Polymer model

SOP-GPU Documentation, Release 2.0

1.2 Benchmark simulations

We have tested the performance of the SOP-GPU package (written in CUDA - a dialect of C and C++ programming
languages) on a NVIDIA GPU Tesla C1060 (MIPT), and have compared the results against the performance of the
optimized C code (SOP program) on a dual Quad Core Xeon 2.83 GHz of a similar level of technology. We have
analyzed the results of CPU- and GPU-based computations by comparing the force spectra, i.e. 𝑓 versus 𝑋 force-
extension profiles, the distributions of unfolding forces (peak forces in the force spectra), and the average temperature
⟨𝑇 ⟩, for the all-𝛽 sheet WW-domain. Aside from small deviations due to the different initial conditions, the profiles of
𝑓(𝑋) and ⟨𝑇 ⟩, and the unfolding force histograms, obtained on the CPU and on the GPU, agree very well (Figure 2).

Figure 2: Comparison of the results of pulling simulations for the WW-domain obtained on a GPU and on a CPU
(pulling speed 𝜈𝑓 = 2.5𝜇𝑚/𝑠). Panel (a): Representative examples of the force spectrum (force-extension curves).
Panel (b): The histograms of unfolding forces. Panel (c): The average temperature of the system as a function of time
⟨𝑇 (𝑡)⟩.

We have compared the overall performance of an end-to-end application of the SOP-GPU program with the heav-
ily tuned CPU-based implementation (SOP program) in describing the Langevin dynamics of the WW domain at
equilibrium. We profiled the computational performance of the SOP-GPU program as a function of the number of
independent trajectories 𝑠 running concurrently on the GPU (many-runs-per-GPU approach). While the single CPU
core generates one trajectory at a time, the GPU device is capable of running many trajectories at the same time. The
results (see Figure 3a) show that, for the WW domain (𝑁 = 34), the GPU accelerates computations starting from
3 independent runs, which is equivalent to a single run for a system of 𝑁 ≈ 102 residues (one-run-per-GPU ap-
proach). This is the so-called break-even point. While the simulation time on the CPU scales linearly with 𝑠 (or with
𝑁), the scaling on the GPU in this regime is sublinear (nearly constant) up to 𝑁 ≈ 104 (𝑠 ≈ 300 for the WW domain).
At this point, the GPU shows significant performance gains relative to the CPU reaching the maximum 80-90-fold
speedup (see Figure 3b). The amount of GPU on-board memory, i.e. ~4 GB (Tesla C1060), is sufficient to describe
long Langevin dynamics for large biomolecular systems of ∼ 104 residues.

1.2. Benchmark simulations 5

SOP-GPU Documentation, Release 2.0

Figure 3: Panel (a): The log-log plot of the computational time per 1,000 steps of the simulations on a CPU and on
a GPU versus the system size, 𝑁 (one-run-per-GPU approach), and versus the number of independent trajectories
running concurrently on a GPU 𝑠 (many-runs-per-GPU approach), for the all-𝛽-strand WW domain. The GPU
performance is tested for the thread blocks of size B = 64, 128, 256, and 512. Panel (b): The log-linear plot of the
relative CPU/GPU performance (computational speedup) as a function of 𝑁 and 𝑠. The performance is compared for
the SOP-GPU program, and when it is accelerated by using texture cache, and texture cache plus intrinsic mathematical
functions.

6 Chapter 1. Self-Organized Polymer model

Chapter 2

Generation of pseudo-random numbers on
graphics processors

Pseudo-random number generators are used in many computer applications such as simulations of stochastic systems,
numerical analysis, probabilistic algorithms, etc. Numerical modeling of biological systems and processes, e.g., all-
atom MD simulations in implicit solvent [Brooks1983], [Haberthur2008], Langevin simulations [Zhmurov2010b],
and Monte Carlo simulations [Press1992], all require generation of a large number of independent random variables
at each step of a simulation run. We developed two approaches for implementation of random number generators
(RNGs) on a graphics processing unit (GPU). In the one-RNG-per-thread approach, one RNG produces a stream
of random numbers in each thread of execution, whereas the one-RNG-for-all-threads method builds on the ability
of different threads to communicate, thus, sharing random seeds across an entire GPU device. An RNG produces a
sequence of random numbers, 𝑢𝑖, which is supposed to imitate independent and uniformly distributed random variates
from the unit interval (0, 1). There are three main requirements for a numerical implementation of an RNG: (1) good
statistical properties, (2) high computational speed, and (3) low memory usage. Because a deterministic sequence
of random numbers comes eventually to a starting point, 𝑢𝑛+𝑝 = 𝑢𝑛, an RNG should also have a long period 𝑝
[LEcuyer2007]. In addition, an RNG must pass rigorous statistical tests of randomness (i.e., for independence and
for uniformity), and some application-based tests of randomness that offer exact solutions to the test applications
[LEcuyer2007], [Marsaglia1996], [Mascagni2000], [Soto1999]. Indeed, using random numbers of poor statistical
quality might result in insufficient sampling, unphysical correlations, and even unrealistic results, which might lead to
errors in practical applications. We developed the GPU-based realizations of several RNGs, which provide pseudo-
random numbers of high statistical quality, using the cycle division paradigm [Zhmurov2011b].

2.1 Method

Different methods are used to generate the Gaussian distributed random variates 𝑔𝑖 from the uniformly distributed
random numbers 𝑢𝑖, (𝑖 = 1, 2, ..., 𝑛) [Tsang2000], [Marsaglia1964], [Box1958]. Here, we adopt the most commonly
used Box-Mueller transformation [Box1958]. In the one-RNG-per-thread approach, the basic idea is to partition a
single sequence of random numbers among many computational threads running concurrently across an entire GPU
device, each producing a stream of random numbers. Since most RNG algorithms, including LCG, Ran2, and Hybrid
Taus, are based on sequential transformations of the current state [Press1994], then the most common way of parti-
tioning the sequence is to provide each thread with different seeds while also separating the threads along the sequence
so as to avoid possible inter-stream correlations (see Figure 4, left panel). On the other hand, several generators, in-
cluding the Mersenne Twister and Lagged Fibonacci algorithms, which employ recursive transformations, allow one
to leap ahead in a sequence of random variates and to produce the (𝑛 + 1)-st random number without knowing the
previous, 𝑛-th number [Mascagni2004]. The leap size, which, in general, depends on a choice of parameters for an
RNG, can be properly adjusted to the number of threads (number of particles 𝑁), or multiples of 𝑁 (𝑀 ×𝑁). Then,

7

http://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform
http://en.wikipedia.org/wiki/Mersenne_Twister
http://en.wikipedia.org/wiki/Lagged_Fibonacci_generator

SOP-GPU Documentation, Release 2.0

all 𝑁 random numbers can be obtained simultaneously, i.e. the 𝑗-th thread produces numbers 𝑗, 𝑗+𝑁, 𝑗+2𝑁, ..., etc.
(𝑗 = 1, 2, ..., 𝑛). At the end of each simulation step, threads of execition must be syncronized to update the current
RNG state. Hence, the same RNG state can be shared by all threads, each updating just one elements of the state. We
refer to this as the one-RNG-for-all-threads approach (Figure 4, right panel).

Figure 4: A simplified schematic of the one-RNG-per-thread approach (left panel) and the one-RNG-for-all-threads
approach (right panel). In the one-RNG-per-thread approach, one RNG produces a stream of pseudo-random numbers
in each 𝑗-th thread of execution (𝑗 = 1, 2, ..., 𝑛), i.e., the same RNG algorithm (realized in many RNGs) is running
in each thread generating different subsequences of the same sequence of random numbers. The one-RNG-for-all-
threads approach builds on the ability of different threads to communicate, and, hence, to share the state of just one
RNG across an entire GPU device.

We employed these methods to develop GPU-based implementations of the Linear Congruent Generator (LCG)
[Press1992], and the Ran2 [Press1992], Hybrid Taus [Press1992], [Tausworthe1965], and additive Lagged Fibonacci
algoritms [Press1992], [[Mascagni2004]. These generators have been incorporated into the program for Langevin
simulations of biomolecules fully implemented on the GPU.

2.2 Benchmark simulations

We tested RNGs implemented on a GPU in Langevin simulations of 𝑁 Brownian oscillators using the Hybrid Taus
and additive Lagged Fibonacci algorithms. We compared the computational time as a function of the system size 𝑁
for three different implementations of Langevin simulations:

• random numbers and Langevin Dynamics are generated on a CPU;

• random numbers, obtained on the CPU, are transfered to the GPU and used to generate Langevin Dynamics on
the GPU;

• random numbers and Langevin Dynamics are generated on the GPU.

The results obtained for the 2.83 GHz Intel Core i7 930 CPU, for the 1.15GHz Tesla C2050 (MIPT) show that starting
from ≈ 102 particles, it becomes computationally expensive to generate random numbers on the CPU and transfer
them to the GPU in order to generate stochastic trajectories on the GPU (Figure 3, left panel). We observed a ~10-
250-fold speedup for Langevin simulations of 𝑁 = 103 − 106 Brownian particles on the GPU (Figure 5, right panel).

We also benchmarked the computational efficiency of the GPU-based realizations of the Ran2, Hybrid Taus, and
Lagged Fibonacci algorithms using Langevin simulations of 𝑁 Brownian oscillators in three dimensions. For each
system size 𝑁 , we ran one trajectory for 106 simulation steps. All 𝑁 threads were synchronized at the end of each
step to emulate an LD simulation run of a biomolecule on a GPU. The associated execution time and memory usage
are profiled in Figure 6 below.

On a GPU Ran2 is the most demanding generator as compared to the Hybrid Taus, and Lagged Fibonacci RNGs
(Figure 6, left panel). Using Ran2 in Langevin simulations to obtain a single trajectory over 109 steps for a system

8 Chapter 2. Generation of pseudo-random numbers on graphics processors

SOP-GPU Documentation, Release 2.0

Figure 5: Left panel: The computational time for Langevin Dynamics (LD) of 𝑁 Brownian oscillators with the
Hybrid Taus and additive Lagged Fibonacci RNGs. Considered are three implementations, where random numbers
and LD are generated on the CPU (Hybrid Taus (CPU) + Dynamics (CPU)), random numbers are obtained on the
CPU, transfered to the GPU and used to propagate LD on the GPU (Hybrid Taus (CPU) + Dynamics (GPU)), and
random numbers and LD are generated on the GPU (Hybrid Taus (GPU) + Dynamics (GPU) and Lagged Fibonacci
(GPU) + Dynamics (GPU)). Right panel: The computational speedup (CPU time/GPU time) for LD simulations fully
implemented on the GPU and on the single CPU core. Compared are two options when an RNG (Hybrid Taus or
Lagged Fibonacci) is organized in a separate kernel or is inside the main (integration) kernel.

Figure 6: The computational performance of LCG, and the Ran2, Hybrid Taus, and Lagged Fibonacci algorithms
in Langevin simulations of 𝑁 Brownian oscillators on the GPU device. Left panel: The execution time (CPU time
for Langevin simulations with Ran2 and Hybrid Taus RNGs is shown for comparison). Right panel: The memory
demand, i.e. the amount of memory needed for an RNG to store its current state. Step-wise increases in the memory
usage for Lagged Fibonacci are due to the change of constant parameters for this RNG.

2.2. Benchmark simulations 9

SOP-GPU Documentation, Release 2.0

of 𝑁 = 104 particles requires additional ~264 hours of wall-clock time. The associated memory demand for Ran2
RNG is quite high, i.e. >250MB for 𝑁 = 106 (Figure 6, right panel). Because in biomolecular simulations a large
memory area is needed to store parameters of the force field, Verlet lists, interparticle distances, etc., the high memory
demand might prevent one from using Ran2 in the simulations of a large system. Also, implementing the Ran2 RNG
in Langevin simulations on the GPU does not lead to a substantial speedup (Figure 6, left panel). By contrast, the
Hybrid Taus and Lagged Fibonacci RNGs are both light and fast in terms of the memory usage and the execution time
(Figure 6). These generators require a small amount of memory, i.e. <15-20MB, even for a large system of as many
as 𝑁 = 106 particles.

10 Chapter 2. Generation of pseudo-random numbers on graphics processors

Chapter 3

Using SOP-GPU program

Running SOP-GPU program requires specification of a configuration file (regular text file), containing information
about the system of interest and parameters of the simulation:

sop-gpu config_file.conf

All the information about the simulation protocol and current process is printed out in terminal screen as well as in
separate files specified in configuration file.

There are six regimes of simulation available in SOP-GPU package: minimization simulation, equilibrium simulation,
point-/plane-pulling simulation, force indentation and heating simulation. Also, SOP-GPU package has implemented
hydrodynamic interactions, which can by optionally included in calculation. Parameters and output files for each of
these regimes are described in sections below.

3.1 General output

The general output files for any regime of simulation are following:

• Energy output file (usual format .dat).

• Trajectory coordinates file (format .dcd).

• Restart coordinates file (format .pdb).

• Reference coordinates file (first frame of the trajectory, format .pdb).

• Final coordinates file (format .pdb).

The columns of standard energy output file are:

1. Current simulation step.

2. Average Maxwell-Boltzmann temperature (𝑇 , in kcal/mol).

3. Potential energy of covalent bonds (𝑈𝐹𝐸𝑁𝐸 , in kcal/mol).

4. Potential energy of native interactions (𝑈𝐴𝑇𝑇
𝑁𝐵 , in kcal/mol).

5. Potential energy of repulsive (long range) interactions (𝑈𝑅𝐸𝑃
𝑁𝐵 , in kcal/mol).

6. Number of native contacts not ruptured (𝑄).

7. Total potential energy (𝑈𝑆𝑂𝑃 , in kcal/mol).

8. Gyration radius (𝑅𝑔𝑦𝑟, optional).

11

SOP-GPU Documentation, Release 2.0

9. Deviation of hydrodynamic tensor from diagonal form (𝜖 (see Eq. (3.6), optional).

3.2 Hydrodynamic interactions

In Langevin Dynamics simulations in the overdamped limit, equations of motion for particles of the system are prop-
agated forward in time (see Eq. (1.5) and Eq. (4.2) below) with the amplitude of random force 𝜌 =

√︀
2𝑘𝐵𝑇𝜁/ℎ =

𝑘𝐵𝑇
√︀

2/𝐷𝛼𝛼ℎ, where 𝛼 runs over all degrees of freedom. In this approach, which ignores the hydrodynamic cou-
pling of degrees of freedom, all particles are described by the same diffusion coefficient 𝐷 = 𝐷𝛼𝛼 = 𝑘𝐵𝑇/𝜁.

To account for solvent-mediated many-body effects, one can use an approach proposed originally by Ermak and
McCammon [Ermak1978] . In this approach, the equation of motion (4.2) is transformed (in absence of external flow)
into the following equation:

∆𝑟𝛼 =

3𝑁∑︁
𝛽=1

𝐷𝛼𝛽

𝑘𝑇
𝐹𝛽ℎ +

√
2ℎ

3𝑁∑︁
𝛽=1

𝐵𝛼𝛽𝑔𝛽 (3.1)

The first term on the right-hand side is a hydrodynamic tensor D — a real 3𝑁 × 3𝑁 matrix, in which an entry 𝐷𝛼𝛽

is a contribution to the diffusion of 𝛼-th degree of freedom from the 𝛽-th degree of freedom. Alternatively, tensor D
can be represented by an 𝑁 × 𝑁 matrix of 3 × 3 submatrices D𝑖𝑗 , each corresponding to a pair of particles 𝑖 and 𝑗.
Also, for the correct distribution of random forces, in the second term in equation (3.1) a real 3𝑁 ×3𝑁 matrix B must
satisfy the condition BᵀB = D, where the superscript ᵀ represents the transpose of a matrix. It is easy to show that
when in equation (3.1) D is a diagonal matrix with the identical matrix elements 𝐷𝛼𝛼 = 𝑘𝑇/𝜁, we recover equation
(3.1).

In SOP-GPU program, we use the Rotne-Prager-Yamakawa (RPY) form of the hydrodynamic tensor D [Rotne1969]
[Yamakawa1970], which is a positive-definite quantity. The submatrices D𝑖𝑗 of RPY tensor are given by the following
expressions:

D𝑖𝑗 =
𝑘𝑇

𝜁

⎧⎪⎪⎨⎪⎪⎩
I , if 𝑖 = 𝑗,(︁

1 − 9|r𝑖𝑗 |
32𝑎

)︁
I +

(︁
3|r𝑖𝑗 |
32𝑎

)︁
r̂𝑖𝑗 × r̂𝑖𝑗 , if 𝑖 ̸= 𝑗 and |r𝑖𝑗 | < 2𝑎𝐻𝐷,(︁

1 + 2𝑎2

3|r𝑖𝑗 |2

)︁
I +

(︁
1 − 2𝑎2

|r𝑖𝑗 |2

)︁
r̂𝑖𝑗 × r̂𝑖𝑗 , if 𝑖 ̸= 𝑗 and |r𝑖𝑗 | ≥ 2𝑎𝐻𝐷.

(3.2)

In equation (3.2), I is the identity matrix of rank 3, 𝑎𝐻𝐷 is the hydrodynamic radius of the particle (we assume that
𝑎𝐻𝐷 is same for all particles, the denotation “×” is used to define the tensor product.

In SOP-GPU program, we utilized an exact approach of computing B using Cholesky decomposition of D, as well
as fast Truncated Expansion approximation (TEA) approach [Geyer2009]. In the TEA-based approach, the matrix
elements of B can be rewritten as 𝐵𝛼𝛽 = 𝐶𝛼𝑏𝛼𝛽𝐷𝛼𝛽 , and equation (3.1) can be recast as

∆𝑟𝛼 =
ℎ

𝜁

3𝑁∑︁
𝛽=1

𝐷𝛼𝛽

𝐷𝛼𝛼
(𝐹𝛽 + 𝐶𝛼𝑏𝛼𝛽 · 𝜌𝑔𝛽) , (3.3)

where

𝑏𝛼𝛽 =

{︃
1 if 𝛼 = 𝛽,

𝑏′ if 𝛼 ̸= 𝛽.
(3.4)

In Eqs. (3.3) and (3.4), 𝐶𝛼 and 𝑏′ are given by

𝐶𝛼 =

⎛⎝1 +
∑︁
𝛽 ̸=𝛼

𝑏′2
𝐷𝛼𝛽

𝐷𝛼𝛼𝐷𝛽𝛽

⎞⎠ 1
2

, (3.5)

12 Chapter 3. Using SOP-GPU program

SOP-GPU Documentation, Release 2.0

𝑏′ =
1 −

√︀
1 − [(𝑁 − 1)𝜖2 − (𝑁 − 2)𝜖]√︀
(𝑁 − 1)𝜖2 − (𝑁 − 2)𝜖

, (3.6)

where 𝜖 = ⟨𝐷𝛼𝛽/𝐷𝛼𝛼⟩. This linearization procedure allows us to efficiently parallelize the integration algorithm on a
GPU.

Cholesky algorithm is implemented by-the-book, i.e. straightforward computation of lower-left-triangular matrix 𝐵
is carried out with 𝑂(𝑁3) complexity. Due to implementation design, the single trajectory can not contain more than
128 particles is Cholesky factorization is applied.

There is no agreement regarding the value of the hydrodynamic radius 𝑎𝐻𝐷. The proposed values vary between
𝑎𝐻𝐷 = 1.5 − 5.3 Å [Cieplak2009] [Frembgen-Kesner2009]. However, one must keep in mind that, although the
TEA handles overlaps correctly, the RPY tensor is better suited for description of non-overlapping beads. Since the
inter-bead 𝐶𝛼−𝐶𝛼-distance in a polypeptide chain is about 3.8 Å, which corresponds to the length of a peptide bond,
𝑎𝐻𝐷 should not exceed 1.9 Å.

For hydrodynamic interactions parameters see Section Hydrodynamic interactions parameters.

3.3 Pulling simulations

Pulling simulations were designed to mimic force-ramp and force-clamp AFM experiments. In this regime, cantilever
base is represented by the virtual particle, connected by a harmonic spring to a specified (“pulled”) amino acid, mim-
icking adsorption of residues on the cantilever tip. The system particles specified as “fixed” will be firmly constrained
mimicking molecule absorption on the surface. The cantilever base moving with constant velocity (𝜈𝑓) extends the
cantilever spring, translating into the molecule extension, with the time-dependent force (force-ramp) f(𝑡) = 𝑓(𝑡)n
in the pulling direction n. The force magnitude, 𝑓(𝑡) = 𝑟𝑓 𝑡, applied to cantilever tip, i.e. to the pulled end of the
molecule, increases linearly in time 𝑡 with the force-loading rate 𝑟𝑓 = 𝜅𝜈𝑓 [Zhmurov2011].

For pulling simulation parameters see Section Pulling parameters. When pulling is enabled, program will save addi-
tional output file (usual format .dat) with pulling data. This file has following columns:

1. Current simulation step.

2. Absolute value of the end-to-end distance (𝑋 , in Å).

3. Projection of the end-to-end distance on pulling vector (𝑋𝑝𝑟𝑜𝑗 , in Å).

4. Absolute value of the cantilever spring force (𝜅∆𝑥, in kcal/molÅ).

5. Force vector component (𝐹𝑥, in kcal/molÅ).

6. Force vector component (𝐹𝑦 , in kcal/molÅ).

7. Force vector component (𝐹𝑧 , in kcal/molÅ).

3.4 Plane-pulling simulations

3.5 Force indentation simulations

Nanoindentation regime adds to the system a cantilever and surface models. In this regime, the cantilever base is rep-
resented by the virtual particle, connected to the spherical bead of radius 𝑅𝑡𝑖𝑝, mimicking the cantilever tip (indentor),

3.3. Pulling simulations 13

SOP-GPU Documentation, Release 2.0

by a harmonic spring. The tip interacts with the particles via the Lennard-Jones potential

𝑈𝑡𝑖𝑝 =

𝑁∑︁
𝑖=1

𝜀𝑡𝑖𝑝

[︃
𝐴𝑡𝑖𝑝

(︂
𝜎𝑡𝑖𝑝

|𝑟𝑖 − 𝑟𝑡𝑖𝑝| −𝑅𝑡𝑖𝑝

)︂12

+ 𝐵𝑡𝑖𝑝

(︂
𝜎𝑡𝑖𝑝

|𝑟𝑖 − 𝑟𝑡𝑖𝑝| −𝑅𝑡𝑖𝑝

)︂6
]︃

(3.7)

thereby producing an indentation on the particle’s outer surface. In Eq. (3.7), 𝑟𝑖 and 𝑟𝑡𝑖𝑝 are coordinates of the 𝑖-th
particle and the center of the tip, respectively, 𝜀𝑡𝑖𝑝 and 𝜎𝑡𝑖𝑝 are the parameters of interaction, and the summation is
performed over all the particles under the tip. The factors 𝐴𝑡𝑖𝑝 and 𝐵𝑡𝑖𝑝 define the attractive and repulsive contributions
into the indentor-particle interactions, respectively. For the standard Lennard-Jones potential 𝐴𝑡𝑖𝑝 = 1 and 𝐵𝑡𝑖𝑝 = −2.
If 𝐴𝑡𝑖𝑝 = 0 and 𝐵𝑡𝑖𝑝 = 1 the interactions are repulsive only. For the cantilever tip, we solve numerically the following
Langevin equation of motion:

𝜉𝑡𝑖𝑝
𝑑𝑟𝑡𝑖𝑝
𝑑𝑡

= −𝜕𝑈𝑡𝑖𝑝(𝑟𝑡𝑖𝑝)

𝜕𝑟𝑡𝑖𝑝
+ 𝜅((𝑟0𝑡𝑖𝑝 − 𝜈𝑓 𝑡) − 𝑟𝑡𝑖𝑝) (3.8)

where 𝑟0𝑡𝑖𝑝 is the initial position of spherical tip center (𝜈𝑓 is the cantilever base velocity; 𝜅 is the cantilever spring
constant), and 𝜉𝑡𝑖𝑝 is the friction coefficient for a spherical particle of radius 𝑅𝑡𝑖𝑝 in water. To generate the dynamics
of the biological particle of interest tested mechanically, the Eqs. (1.1) — (1.5) for the particle (see above) and Eqs.
(3.7) and (3.8) for the indentor (spherical tip) should be solved numerically.

The substrate surface is also modeled using Lennard-Jones potential with parameters of interactions 𝜀𝑠𝑢𝑟𝑓 and 𝜎𝑠𝑢𝑟𝑓

and factors 𝐴𝑠𝑢𝑟𝑓 and 𝐵𝑠𝑢𝑟𝑓 (see Eq. (3.7)). The surface is represented by a number of particles and interaction
potential is calculated between each particle in system and particles on the surface.

The cantilever base moving with constant velocity (𝜈𝑓) exerts (through the tip) the time-dependent force (force-ramp)
f(𝑡) = 𝑓(𝑡)n in the direction n perpendicular to the particle surface. The force magnitude, 𝑓(𝑡) = 𝑟𝑓 𝑡, exerted on the
particle increases linearly in time 𝑡 with the force-loading rate 𝑟𝑓 = 𝜅𝜈𝑓 [Kononova2013b] [Kononova2014] .

For force indentation simulation parameters see Section Force indentation parameters. The results of indentation will
be saved in additional output file (usual format .dat) with the following columns:

1. Current simulation step.

2. Distance traveled by cantilever base (𝑍, in Å).

3. Average molecular force acting on a cantilever tip projected onto chip movement direction (𝐹𝑝𝑟𝑜𝑗 , in kcal/molÅ).

4. Average absolute value of a molecular force, acting on a cantilever tip, (𝐹 , in kcal/molÅ).

5. Absolute value of the cantilever spring force at a given step (𝜅∆𝑥, in kcal/molÅ).

6. Absolute value of the cantilever spring force average (𝜅∆𝑥, in kcal/molÅ).

7. Molecular force vector component (𝐹𝑥, in kcal/molÅ).

8. Molecular force vector component (𝐹𝑦 , in kcal/molÅ).

9. Molecular force vector component (𝐹𝑧 , in kcal/molÅ).

10. Current cantilever tip coordinate (𝑋𝑥, in Å).

11. Current cantilever tip coordinate (𝑋𝑦 , in Å).

12. Current cantilever tip coordinate (𝑋𝑧 , in Å).

13. Current cantilever base coordinates (𝑍𝑥, in Å).

14. Current cantilever base coordinates (𝑍𝑦 , in Å).

15. Current cantilever base coordinates (𝑍𝑧 , in Å).

14 Chapter 3. Using SOP-GPU program

SOP-GPU Documentation, Release 2.0

3.6 Heating simulations

Although coarse-grained models are known to be not very accurate in describing heat-induced unfolding of molecules,
SOP-model still can provide good qualitative results. When heating option is on, temperature of the water bath (i.e.
strength of random force, see Eq. (4.2) below) increases gradually during the simulation process. Heating parameters
are described in Section Heating parameters.

3.6. Heating simulations 15

SOP-GPU Documentation, Release 2.0

16 Chapter 3. Using SOP-GPU program

Chapter 4

Units

For numerical evaluation of the Eq. (1.5) in time, it can be written in form

𝜉
𝑟𝑡+1
𝑖 − 𝑟𝑡𝑖

∆𝑡
= 𝐹 𝑡

𝑖 + 𝐺𝑡
𝑖

(4.1)

When divide both sides of Eq. (4.1) by particle mass 𝑚 and express the change of coordinates ∆𝑟𝑡𝑖 = 𝑟𝑡+1
𝑖 − 𝑟𝑡𝑖 arrive

to

∆𝑟𝑡𝑖 =
∆𝑡

𝜉/𝑚

1

𝑚
(𝐹 𝑡

𝑖 + 𝐺𝑡
𝑖)

From the equation for harmonic oscillator, 𝜉/𝑚 = 𝜁/𝜏𝐿 is damping coefficient. Here 𝜁 is dimensionless damping
ratio and 𝜏𝐿 =

√︀
𝑚𝑎2/𝜀ℎ is characteristic time for underdamped motion of spherical particle of mass 𝑚 and radius

𝑎 with energy scale 𝜀ℎ. According to Langevin equation, the random force 𝐺𝑡
𝑖 = 𝑔𝑡𝑖

√︀
2𝜁𝑘𝐵𝑇/ℎ, where 𝑔𝑡𝑖 is random

number from the interval [0, 1]. Hence

∆𝑟𝑡𝑖 =
∆𝑡𝜏𝐿
𝜁𝑚

(𝐹 𝑡
𝑖 + 𝑔𝑡𝑖

√︀
2𝜁𝑘𝐵𝑇/ℎ) (4.2)

From the Stokes-Einstein friction theory 𝜉 = 6𝜋𝜂𝑎 for a spherical particle of radius 𝑎 in a liquid with viscosity 𝜂.
Therefore 𝜁 = 6𝜋𝜂𝑎2/

√
𝑚𝜀ℎ. In the program 𝜁 = 50. This was obtained for 𝑎 ∼ 5 Å, 𝑚 ∼ 3 × 10−22 g (mass of a

residue) and the bulk water viscosity 𝜂 = 0.01 gs −1 cm −1.

In general, 𝑎 varies between 3.8 Å to 5 Å, while 𝑚 varies between 3 × 10−22 g to 5 × 10−22 g. In the simulations
𝑎 = 3.8 Å. Because of the fact that 𝜁 depends on 𝜀ℎ, every time when 𝜀ℎ was changed, valid 𝑚 value should be
calculated, which gives the value 𝜁 = 50.

Example: for 𝜀ℎ = 1 kcal/mol from the above equation for 𝜁 we find that 𝑚 = 4.3 × 10−22 g which is a valid value.
For 𝜀ℎ = 1.5 kcal/mol, we get 𝑚 = 3 × 10−22 g which is still a valid value. After finding the mass 𝑚, we can go
back to the expression for 𝜏𝐿 and get its value. For example, for 𝜀ℎ = 1 kcal/mol we get 𝜏𝐿 = 3 ps while for 𝜀ℎ = 1.5
kcal/mol, we get 𝜏𝐿 = ps.

For the overdamped Langevin dynamics the characteristic time is 𝜏𝐻 = 𝜁𝜀ℎ𝜏𝐿/𝑘𝑇 = 6𝜋𝜂𝑎3/𝑘𝑇 . In order to get it in
units of ps, both 𝜀ℎ and 𝑘𝐵𝑇 need to be of the same units. Since 𝜀ℎ is in kcal/mol, 𝑘𝐵𝑇 should be also in kcal/mol
(at 𝑇 = 300 K 𝑘𝐵𝑇 = 0.6 kcal/mol). Therefore the simulation time step ∆𝑡 = ℎ · 𝜏𝐻 is also in units of ps. With
the standard parameters (𝜂 = 0.01 gs −1 cm −1, 𝑇 = 300 K and 𝑎 = 3.8 Å), 𝜏𝐻 = 248 ps. The parameter ℎ can be
specified in configuration file.

In the pulling/indentation simulation, cantilever velocity is defined as 𝜈𝑓 = ∆𝑥/(𝑛𝑎𝑣 ·ℎ·𝜏𝐻) where ∆𝑥 is displacement
of virtual bead, representing cantilever base, during 𝑛𝑎𝑣 steps, it is given in Å. The force is calculated in kcal/(molÅ),
to get the force in pN, one need to multiplied by 70. Therefore, the cantilever spring constant 𝜅 should be also specified
in the units of kcal/(mol 2).

17

SOP-GPU Documentation, Release 2.0

18 Chapter 4. Units

Chapter 5

Topology

The SOP-GPU package includes two utilities for coarse-graining the system. The old one, sop-top can only create
𝐶𝛼-based model, but there is a functionality to make tandems out of the monomer. The new utility sop-top2 uses
a flexible coarse-graining configuration config, which allows one to create various coarse-grained models (e.g. 𝐶𝛼 or
𝐶𝛼 − 𝐶𝛽).

5.1 Old sop-top utility

Creating of coarse-grained structure with corresponding topology file can be performed running sop-top utility as
follow:

sop-top top_config_file.top

As with the main program, configuration file should be passed as the first parameter to sop-top. Executing the
command above will generate new, coarse-grained PDB file and the topology file in Gromacs TOP format. The PDB
file is used only to store coordinates of the particles and all the connectivities are described in TOP file. This con-
figuration file can use the same features as configuration file for SOP-GPU, as described in Section Input parameters
file. Topology is created from the original (full-atomic) PDB file using its ATOM and SSBOND entries. All 𝐶𝛼 atoms
are added into [atoms] section of topology file generated. Backbone connectivity and disulfide bonds along with
their equilibrium (PDB) distances are collected into [bonds] section. Native contacts are determined based on two
cut-off distances. The first one relates to a maximum 𝐶𝛼 − 𝐶𝛼 distance for two amino-acids in native contact (simple
Go definition), the second one is the cut-off for the minimal distance of two heavy atoms in corresponding amino-acids
side-chains (full Go definition). Along with the indexes of amino-acids 𝑖 and 𝑗, PDB distance 𝑟0𝑖𝑗 and value of 𝜀ℎ are
saved for each pair qualify. 𝜀ℎ can be specified as constant value for all native pairs or can be taken from occupancy of
beta columns of original PDB. In later case, geometric average of two values listed for amino-acids 𝑖 and 𝑗 are taken.

5.2 New sop-top (sop-top2) utility

In some cases, the 𝐶𝛼-representation is not just sufficient. The sop-top2 utility allows for the custom coarse-
graining of the initial full-atomic system. The coarse-graining in this case relies on the coarse-graining configuration
file, in which one can find a description on how to coarse-grain a particular amino-acid. For the convinience, two
configs are supplied with the SOP-GPU package: one to get the 𝐶𝛼 representation and the other — to get the 𝐶𝛼−𝐶𝛽

representation of the protein system. The sop-top2 program takes the path to the configuration file as an argument.
In this file, one should specify the following parameters as an input: the path to the initial (all-atom) PDB file and the
path to the coarse-grained configuration file.

19

SOP-GPU Documentation, Release 2.0

5.2.1 The coarse-graining configuration: 𝐶𝛼 − 𝐶𝛽 model

The coarse-graining configuration file starts with the list of masses for all the atoms present in the system:

MASS 1 H 1.00800 ! Hydrogen
MASS 2 C 12.01100 ! Carbon
MASS 3 N 14.00700 ! Nitrogen
MASS 4 O 15.99900 ! Oxygen
MASS 5 S 32.06000 ! Sulphur

The description of the coarse-graining for each amino-acid follows. For instance, in the 𝐶𝛼−𝐶𝛽 approach, the alanine
entry will be:

RESI ALA
BEAD CA CA
REPR N HN CA HA C O
COOR CA
CHAR 0.0
CONN +CA CB
ENDBEAD
BEAD CB SC
REPR CB HB1 HB2 HB3
COOR CB
CHAR 0.0
ENDBEAD
ENDRESI

Here, RESI and ENDRESI keywords encapsulate the description of the residue, which contain two beads entries:
one for the 𝐶𝛼-bead and one for the side-chain (𝐶𝛽) bead. Each bead starts with the keyword BEAD followed by
the name and type of the bead. For each bead, the following information should be provided: (1) Which atoms this
bead represents (their names as they are in the initial PDB file are listed after REPR keyword). (2) Where the created
bead should be placed (the name (or names) for the positioning atoms should be provided after COOR keyword). (3)
The charge (CHAR) is the charge assigned to the bead (not used in SOP model). The entry CONN lists the covalent
bonds that should be added for a particular bead. After this keyword listed are the names of the beads with which
the current bead is connected to. The syntax resembles the CHARMM forcefield topology file: the + sign means
that the connection is with the next residue in the polypeptide chain, - — with the preceeding. Each covalent bond
should be added once (i.e. if 𝐶𝛼 − 𝐶𝛽 bond is added for the 𝐶𝛼-atom, there is no necessity to add this bond for the
𝐶𝛽-atom, as the alanine entry above illustrates). In the entry above, the 𝐶𝛼-bead (CA) is connected to the 𝐶𝛼-bead of
the next residue (+CA) and to the 𝐶𝛽-bead of the same residue (CB). There is no CONN entry for the 𝐶𝛽-bead, since
the 𝐶𝛼 − 𝐶𝛽 is already listed in the the 𝐶𝛼 bead section.

In other words, the entry for the alanine above, reads: In the residue ALA, first bead is the CA (𝐶𝛼) bead of the type CA
(BEAD CA CA). It represents the atoms of the backbone (REPR N HN CA HA C O) and should be placed on the
position of the 𝐶𝛼-atom of the alanine residue (COOR CA). Its charge is zero (CHAR 0.0). It is covalently connected
to the 𝐶𝛼-bead of the next residue and the side-chain (𝐶𝛽) bead of the same residue. The second bead of the alanine
residue is the CB (𝐶𝛽) bead of type SC (BEAD CB SC). It represents the side-chain atoms (REPR CB HB1 HB2
HB3) and should be placed on the position of the 𝐶𝛽-atom from the initial all-atom PDB (COOR CB). Its charge is
also zero (CHAR 0.0). The description of the bead and residue ends here.

The corse-graining configuration file should provide similar description for all the residues in the initial PDB file (in
general the description of the coarse-graining for all 20 essential amino-acids should be suffitient). If you system has
some non-standart residues, sugars, nucleic acids, etc., you will need to add the coarse-graining description to the
coarse-graining config file you use. To do so, you need to decide, how many beads for the residue you want to add,
where you want to place them, which atoms they represent, what is the total charge of these atoms. The connection
entry for each bead should include the covalent connectivity within the residue and(or) the connectivity to the next
(preceding) residues, marked with + (-) sign.

The provided with SOP-GPU 𝐶𝛼 −𝐶𝛽 coarse-graining configuration file is called aa_to_cg.inp and includes the

20 Chapter 5. Topology

SOP-GPU Documentation, Release 2.0

following description for the side chains of 20 essential amino-acids: (i) there is no side-chain for GLY; (ii) for the
aliphatic amino acids (ALA, VAL, LEU, and ILE), the 𝐶𝛽-bead is placed at the position of the center of mass of the
side-chain; (iii) for residues THR and SER, the 𝐶𝛽-atom is placed at the position of the hydroxyl oxygen; (iv) the
side-chain of the acidic amino acids (ASP and GLU) is placed at the center of mass of the 𝐶𝑂𝑂-group; (v) the side-
chain of the basic amino acids (LYS and ARG) is placed at the center of mass of the 𝑁𝐻3+-group; (vi) for ASN and
GLN, the 𝐶𝛽-atom is placed at the position of the center of mass of the group 𝐶𝑂 −𝑁𝐻2; (vii) aromatic side-chains
in PHE and TYR are represented by a single 𝐶𝛽-bead placed at the geometrical center of the rings (for TYR, the bead
representing the 𝑂𝐻-group is also added); (viii) TRP side-chain having a double-ring structure is represented by two
beads placed in the geometrical centers of the rings; (ix) HIS is represented by a single bead placed at the geometrical
center of the five-member ring forming the side-chain; (x) sulfur-containing amino acids (MET, CYS) are represented
by a side-chain bead, placed at the position of the sulfur atom; and (xi) the 𝐶𝛾-atom in PRO is represented by the
𝐶𝛽-bead linked to its 𝐶𝛼 bead and to the 𝐶𝛼 bead of the residue before, thus forming a cyclic bond structure.

5.2.2 The coarse-graining configuration: 𝐶𝛼 model

The coarse-graining configuration file 𝐶𝛼-based model is also provided with the package. It is called
aa_to_cg_ca.inp. The entry for Alanine residue in this file is:

RESI ALA
BEAD CA CA
REPR CA
COOR CA
CHAR 0.0
CONN +CA
ENDBEAD
ENDRESI

Here, only one 𝐶𝛼 bead of type CA is added (BEAD CA CA) on the position of the 𝐶𝛼 atom (COOR CA). It has zero
charge (CHAR 0.0) and connected to the 𝐶𝛼 bead of the next residue in the polypeptide chain (CONN +CA).

5.3 Additional covalent bonds

In many proteins, the covalent bonding is not limited by the polypeptide backbone. The most common example is the
disilfide bonding. In the sop-top2 utility, these bonds can be added by providing additional file, that contain the
list of additional bonds to be added. The path to this file can be specified by the parameter additional_bonds. If this
parameter is absent, no additional bonds will be added. In this file, each line correspond to one bond and starts with
the CONN keyword followed by the chain-residue-name triplet for two beads to be connected:

CONN A 49 SG B 76 SG

The line above tell the programm to add the disulfide bond between the residue 49 from the chain A and residue 76 of
the chain B. The names SG for both of these residues are the names for the side-chain atoms of the cystene residues in
the 𝐶𝛼 − 𝐶𝛽 coarse-graining approach. Since there are no SG beads in the 𝐶𝛼 model, the same disulfide bond would
be:

CONN A 49 CA B 76 CA

5.4 Topology file

There are three types of interactions in SOP model: covalent interactions, native interactions and repulsive pairs. All
these should be listed in Gromacs-style topology file (.top). SOP topology file has four sections: [atoms], that
lists all the particles (𝐶𝛼 and 𝐶𝛽 atoms) in the system (including information about residue ID, residue and chain name,

5.3. Additional covalent bonds 21

SOP-GPU Documentation, Release 2.0

etc.), and three sections that correspond to three types of interactions: [bonds] for covalent bonds, [native
] for native interactions and [pairs] for repulsive pairs. The [atoms] section follows the Gromacs-style
atom description:

[atoms]
; nr type resnr residue atom cgnr charge mass

0 CA 1 LEU CA A 0.00 56.044
1 CG 1 LEU CG A 0.00 57.116
2 CA 2 ILE CA A 0.00 56.044
3 CD 2 ILE CD A 0.00 57.116

...

Here, the columns correspond to particle ID, particle type, number of residue, particle atom name, charge and mass.

The last three sections consist of the list of interacting particles IDs, function type and set of specific parameters.
Particle IDs correspond to internal program indexes and start from 0, function type column is set to 1 for all pairs and
ignored, parameters are specific for each interaction type as described below. More details on file format can be found
in Gromacs Manual.

5.4.1 [bonds] section

Typical [bonds] section includes lines similar to the following:

[bonds]
; ai aj funct c0 c1 c2 c3

0 1 1 3.81188
1 2 1 3.77232
2 3 1 3.79319

...

Covalent bonds include backbone interactions and disulfide S-S bonds. Potential energy function term that corresponds
to covalent bonds interaction is described by 𝑈𝐹𝐸𝑁𝐸 (Eq. (1.2)) in Eq. (1.1), where summation is made over all lines
in [bonds] section of the topology file, 𝑖 and 𝑗 correspond to the particles IDs listed in the line, distance 𝑟𝑖𝑗 is
computed from particles coordinates, 𝑟0𝑖𝑗 is the distance between two corresponding 𝐶𝛼 atoms in native state (PDB
file), listed as the first parameter in the line (column c0, see sample listing above).

5.4.2 [native] section

[native]
; ai aj funct c0 c1 c2 c3

5 9 1 5.85792 1.50000
5 10 1 7.06482 1.50000
5 35 1 6.64479 1.50000

...

In SOP model, native interactions (𝑈𝐴𝑇𝑇
𝑁𝐵 , see Eq. (1.1)) are described by full Lennard-Jones potential (Eq. (1.3)).

Each term in the sum corresponds to one line in [native] section. Apart from IDs of interacting particles,
equilibrium distance 𝑟0𝑖𝑗 (column c0) and the strength of non-bonded energy interaction, 𝜀ℎ (column c1), are listed.
𝑟0𝑖𝑗 is the distance between 𝐶𝛼 atoms in native state (PDB file), value of 𝜀ℎ is usually between 1.0 and 1.5 kcal/mol
and can be obtained from att-atom MD simulations.

22 Chapter 5. Topology

SOP-GPU Documentation, Release 2.0

5.4.3 [pairs] section

[pairs]
; ai aj funct c0 c1 c2 c3

0 2 1
0 3 1
0 4 1

...

Pairs section correspond the third term in Eq. (1.1) (Eq. (1.4)). There is no pair-specific parameters in this section, only
indexes are listed. Note, that this list scales as ∼ 𝑁2 with the system size 𝑁 , and saving all possible repulsive pairs
in the topology file would lead to very large files. In SOP-GPU program, this section is used only for small systems
and when trajectory massive-production is employed. When large system is simulated, dual-range cut-off algorithm
is utilized and only pairs withing bigger cut-off are kept (pairlist). Pairlist is updated using exclusion principle: only
those pairs that are withing cut-off distance but not in the list of excluded pairs added. Verlet list is built from this
pairlist based on smaller cut-off distance and used when potential function and forces are computed. Excluded pairs
are those already listed in [bonds] and [native] sections.

5.5 Parameter for the topology creation

Both sop-top and sop-top2 use the parameters file, path to which is passed as a first argument. The parameters
one can use are:

• structure <filename>

Type: Path to the file.

Status: Required.

Purpose: Path to the initial (all-atomic) PDB file.

• additional_bonds <filename>

Type: Path to the file.

Status: Optional.

Purpose: Path to the file with the list of additional bonds (e.g. S-S bonds)

• topology <filename>

Type: Path to the file.

Status: Required.

Purpose: Path to the output topology (.top) file.

• coordinates <filename>

Type: Path to the file.

Status: Required.

Purpose: Path to the output coarse-grained .pdb file.

• topology_psf <filename>

Type: Path to the file.

Status: Optional. Uses with sop-top2 only.

Purpose: The path to save the topology in .psf (NAMD) format (for VMD visualisation).

5.5. Parameter for the topology creation 23

SOP-GPU Documentation, Release 2.0

• topology_natpsf <filename>

Type: Path to the file.

Status: Optional. Uses with sop-top2 only.

Purpose: The path to save the topology in .psf (NAMD) format (for VMD visualisation). Native contacts
will be saved instead of covalent bonds in the corresponding section. Convinient for the native contacts
inspection.

• R_limit_bond <cut-off distance>

Type: Float.

Status: Required.

Purpose: The cut-off value for the distance between beads. If two beads are within this distance in the
provided structure, they considered to form native contact.

• SC_limit_bond <cut-off distance>

Type: Float.

Status: Optional.

Default value:

Purpose: The cut-off value for the distance between side-chain beads. If two atoms listed in the REPR
section of the amino acid are within this distance in the provided structure, the beads considered to form
native contact.

• eh <native energy scale>

Type: Float or O/B.

Status: Required.

Purpose: The value for the 𝜀ℎ parameter. If the float value is given, the value is the same for all contacts.
If the O or B is specified, the value is taken as a geometric average of the beta or occupancy column value.

24 Chapter 5. Topology

Chapter 6

Input parameters file

6.1 General features

Input parameters file contains all the simulation parameters listed as tab or space separated pairs of name and value.
Remarks are allowed using “#” character. To simplify creation of multiple configuration/output files, parameters
values support macroses. This can be use full in order to avoid overwriting of the output files if multiple trajectories
are running in parallel, for example when many-runs-per-GPU approach is used. Any parameter name in the file can
be used as macros, additional macroses can be added using same name-value syntax as for regular parameters. To use
macros, parameter name included in any other parameter value should be surrounded with “<” and “>” characters.
For example, the following lines:

run 3
DCDfile <run>.dcd

result in the value for the output file name “3.dcd”.

6.2 Device parameters

• device <device ID>

Type: Integer.

Status: Required.

Default value: 0.

Purpose: ID of NVidia card to run simulations on. Use “nvidia-smi” or “deviceQuery” from NVidia SDK
to check devices.

• block_size <integer>

Type: Integer.

Status: Optional.

Default value: 256.

Purpose: Set the number of threads per block. Can be specified for every potential indi-
vidually, using block_size_covalent, block_size_native, block_size_pairs, block_size_pairlist and
block_size_possiblepairs.

• max_covalent: <integer>

25

SOP-GPU Documentation, Release 2.0

Type: Integer.

Status: Optional.

Default value: 8.

Purpose: Set the maximum number of pairs per residue for covalent interactions.

• max_native <integer>

Type: Integer.

Status: Optional.

Default value: 128.

Purpose: Set the maximum number of pairs per residue for native interactions.

• max_pairs <integer>

Type: Integer.

Status: Optional.

Default value: 512.

Purpose: Set the maximum number of pairs per residue for pairs list.

• max_possiblePairs <integer>

Type: Integer.

Status: Optional.

Default value: 4096.

Purpose: Set the maximum number of pairs per residue for possible pairs list.

6.3 Structure parameters

• name <protein name>

Type: String.

Status: Required.

Purpose: Name, assigned to the structure. Used mostly for files naming.

• topology <filename>

Type: Path to the file.

Format: .top

Status: Required.

Purpose: Path to the structure topology file (see Section Topology).

• coordinates <filename>

Type: Path to the file.

Format: .pdb

Status: Required.

Purpose: Path to the structure initial coordinates file.

26 Chapter 6. Input parameters file

SOP-GPU Documentation, Release 2.0

6.4 General simulation parameters

• numsteps <steps count>

Type: Long integer.

Status: Required.

Purpose: Number of simulation steps.

• timestep <time>

Type: Float.

Units: 𝜏𝐻 (see Section Units).

Status: Required.

Purpose: Time-scale of one simulation step.

• seed <random seed>

Type: Integer.

Status: Optional.

Default value: Taken from current date and time.

Purpose: Initial random seed used for random force. Actual seed is computed by adding run or firstrun
(whichever is defined) to this value.

• run <trajectory number>

Type: Integer.

Status: Optional.

Default value: -1

Purpose: Trajectory number when running only one trajectory per GPU (“one-run-per-GPU approach”).
Usually used for files naming. Alternatively, firstrun and runnum can be used.

• firstrun <first trajectory number>

Type: Integer.

Status: Required if run is not specified.

Purpose: Number of first trajectory when “using many-runs-per-GPU” approach.

• runnum <number of trajectories>

Type: Integer.

Status: Required if firstrun is specified.

Purpose: Total amount of trajectories for running in parallel on one GPU when using “many-runs-per-
GPU” approach. Trajectories from firstrun to firstrun + runnum will be started. Note, that in this
case all output files require “<run>” macros, so that the output data will be saved into different files for
different trajectories.

6.5 Force-field parameters

• temperature <temperature value>

6.4. General simulation parameters 27

SOP-GPU Documentation, Release 2.0

Type: Float.

Units: kcal/mol.

Status: Optional.

Default value: 0.6.

Purpose: Set the temperature to heat bath (random force). Default value 0.6 kcal/mol ≈ 300 K.

• zeta <:math:‘zeta‘ value>

Type: Float.

Units: Dimensionless.

Status: Optional.

Default value: 50.0.

Purpose: Friction coefficient for amino acid in viscous environment. For a spherical particle: 𝜁 =
6𝜋𝜂𝑎2/

√
𝑚𝜀ℎ, where 𝜂 = 0.01 gs −1 cm −1 is a bulk water viscosity, 𝑚 ∼ 3 × 10−22 g is an aver-

age mass of an amino acid residue, 𝑎 = 3.8 Å is length of amino acid amide bond, 𝜀ℎ is an average
strength (hydrophobicity) of native interactions, it is taken from topology file and usually between 0.9
and 1.5.

• kspring_cov <spring constant>

Type: Float.

Units: kcal/molÅ.

Status: Optional.

Default value: 20.0.

Purpose: Spring constant 𝑘 of covalent interactions in FENE potential (Eq. (1.2)).

• R_limit <tolerance in distance change>

Type: Float.

Units: Å.

Status: Optional.

Default value: 2.0.

Purpose: The tolerance in the change of the covalent bond distance 𝑅0 parameter in FENE potential (Eq.
(1.2)).

• a <covalent bond length>

Type: Float.

Units: Å.

Status: Optional.

Default value: 3.8.

Purpose: Default distance between 𝐶𝛼-atoms in polypeptide chain. Amino acid size parameter 𝜎𝑙 in
repulsive Lennard-Jones potential as an a (Eq. (1.4)).

• el <repulsive energy factor>

28 Chapter 6. Input parameters file

SOP-GPU Documentation, Release 2.0

Type: Float.

Units: kcal/mol.

Status: Optional.

Default value: 1.0.

Purpose: Energy factor 𝜀𝑙 of repulsive interactions (Eq. (1.4)).

6.6 Pairs lists parameters

• pairs_cutoff <pairs cut-off distance value>

Type: Float.

Units: Å.

Status: Optional.

Default value: 20 Å.

Purpose: Cut-off distance for a pair of amino acids from a pair list defining whether repulsive interactions
between these particles will be taken into account or not. If distance between two particles is larger then
this value, force is not computed.

• pairlist_cutoff <pairs (Verlet) list cut-off distance value>

Type: Float.

Units: Å.

Status: Optional.

Default value: 20 Å.

Purpose: Cut-off distance for a pair of amino acids defining whether this pair will be added to pairs
(Verlet) list or not. If the distance between two particles is less then this value, pair is added into pairs
(Verlet) list.

• pairs_threshold <possible pairs cut-off distance value>

Type: Float.

Units: Å.

Status: Optional.

Default value: 200 Å.

Purpose: Cut-off distance using to generate the list of possible pairs. This list is generated based on
exclusion principle: if a pair of amino acids does not belong to covalent bond or native bond and distance
between them is less than the threshold value, then the pair is added into possible pairs list.

• pairs_freq <number of steps>

Type: Float.

Status: Optional.

Default value: 1000.

Purpose: Frequency of the pairs (Verlet) list update.

• possiblepairs_freq <number of steps>

6.6. Pairs lists parameters 29

SOP-GPU Documentation, Release 2.0

Type: Float.

Status: Optional.

Default value: 100000.

Purpose: Frequency of the possible pairs list update.

6.7 Hydrodynamic interactions parameters

• hi_on <on/off>

Type: Boolean.

Status: Optional.

Default value: off.

Purpose: Switch on calculation of hydrodynamic interactions (see Section Hydrodynamic interactions).

• hi_exact <on/off>

Type: Boolean.

Status: Optional.

Default value: off.

Purpose: Use Cholesky-based method of the hydrodynamic tensor calculation, which is exact approach
(see Section Hydrodynamic interactions). If disabled, TEA approach is used.

• hi_a <hydrodynamic radius value>

Type: Float.

Units: Å.

Status: Optional.

Default value: 1.8.

Purpose: Hydrodynamic radius 𝑎𝐻𝐷 of a particle.

• hi_epsilon_freq <number of steps>

Type: Integer.

Status: Required, if hi_on is on and hi_exact is off.

Purpose: Frequency of updating ersatz coefficients for TEA method (𝜖 in Eq. (3.6)). Recommended value
are in range 1–10.

• hi_capricious <on/off>

Type: Boolean.

Status: Optional.

Default value: on.

Purpose: Whether to abort execution on weird values of the hydrodynamic tensor in TEA approach. See
also hi_epsmax.

• hi_unlisted <on/off>

30 Chapter 6. Input parameters file

SOP-GPU Documentation, Release 2.0

Type: Boolean.

Status: Optional.

Default value: on.

Purpose: Whether to calculate all particle-particle interactions, or use the pairs (Verlet) list. Using pairs
list is heavily discouraged. If hi_exact is on, this parameter is ignored and all particle-particle interactions
are always computed.

• hi_epsmax <accuracy value>

Type: Float.

Status: Optional.

Default value: 999.0.

Purpose: Abort simulation if 𝜖 (see Eq. (3.6)) reaches this value and hi_capricious is on; since 𝜖 will
never exceed 1, the default parameter value will never trigger abortion.

6.8 Pulling parameters

• pulling <on/off>

Type: Boolean.

Status: Optional.

Default value: off.

Purpose: Switch on the pulling regime with pulling parameters (see Section Pulling simulations).

• k_trans <cantilever spring constant>

Type: Float.

Units: kcal/mol 2.

Status: Optional.

Default value: 0.05.

Purpose: The value of cantilever spring constant 𝜅.

• fconst <pulling force>

Type: Float.

Units: kcal/molÅ.

Status: Required, if deltax is not specified.

Default value: 0.0.

Purpose: The value of applied external force, using to run pulling simulations with force-clamp protocol.

• deltax <pulling speed>

Type: Float.

Units: Å.

Status: Required, if fconst is not specified.

Default value: 0.0.

6.8. Pulling parameters 31

SOP-GPU Documentation, Release 2.0

Purpose: The value defining the cantilever base velocity in simulations with force-ramp protocol. Position
of the cantilever base will be displaced by deltax every pullFreq steps. Actual pulling speed can be
calculated as deltax/(pullFreq · timestep) (see Section Units).

• pullFreq <number of steps>

Type: Integer.

Status: Optional.

Default value: nav.

Purpose: The frequency of cantilever base displacement by deltax.

• pullDirection <string>

Type: “endToEnd” / “vector”

Status: Required.

Default value: endToEnd

Purpose: Direction in which external force if applied. If “endToEnd”, cantilever base will move along
end-to-end vector, which is obtained from positions of fixedEnd and pulledEnd residues. If “vector” is
chosen, it also requires specification of pullVector.

• pullVector < x, y, z normalized coordinates>

Type: Vector.

Status: Required, if pullDirection is “vector”.

Purpose: Direction vector of external force application.

• fixedEnd, pulledEnd <residue ID >

Type: Integer.

Status: Required.

Purpose: The residue IDs, which will be used to calculate end-to-end distance.

• fixed <list of residue IDs>

Type: List of integers.

Status: Required.

Purpose: List of amino acids, which will be fixed during the pulling simulations. The values should be
space-separated, interval of the values can be specified as “value_1 to value_N”.

• pulled <list of residue IDs>

Type: List of integers.

Status: Required.

Purpose: List of amino acids to which external force fconst will be applied (force-clamp protocol) or
which will be displaced by deltax (force-ramp protocol). The values should be space-separated, interval
of the values can be specified as “value_1 to value_N”.

• pullOutput <filename>

Type: Path to the file.

Status: Optional.

Default value: “pull.<name>_<author><run>.dat”

32 Chapter 6. Input parameters file

SOP-GPU Documentation, Release 2.0

Purpose: Path to output file of pulling simulations (see Section Pulling simulations).

6.9 Force indentation parameters

• indentation <on/off>

Type: Boolean.

Status: Optional.

Default value: off.

Purpose: Switch on the force indentation regime with indentation parameters (see Section Force indenta-
tion simulations). Virtual particles, corresponding to cantilever tip, cantilever base and substrate surface
will be added to the coordinates output files.

• indentationChip <position vector x, y, z>

Type: Vector.

Units: Å.

Status: Required.

Purpose: Initial position of the virtual particle representing cantilever base (i.e. cantilever “chip”).

• indentationTip <position vector x, y, z>

Type: Vector.

Units: Å.

Status: Optional.

Default value: indentationChip.

Purpose: Initial position of the center of virtual sphere representing cantilever tip.

• indentationDirection <direction vector x, y, z>

Type: Vector.

Status: Required.

Purpose: Direction of the cantilever base movement.

• indentationTipR <radius value>

Type: Float.

Units: Å.

Status: Required.

Purpose: Radius of the virtual sphere representing cantilever tip.

• indentationTipKs <spring constant value>

Type: Float.

Units: kcal/mol 2.

Status: Required.

Purpose: Spring constant of the cantilever.

• indentationDeltaX <cantilever base velocity>

6.9. Force indentation parameters 33

SOP-GPU Documentation, Release 2.0

Type: Float.

Units: Å.

Status: Required.

Purpose: The value define the displacement of the virtual particle, representing cantilever base,
every indentationFreq steps. Actual cantilever base velocity can be calculated as indentation-
DeltaX/(indentationFreq · timestep) (see Section Units).

• indentationSigma <range of LJ interactions>

Type: Float.

Units: Å.

Status: Optional.

Default value: 1.0.

Purpose: Repulsive distance for the Lennard-Jones potential 𝜎𝑡𝑖𝑝 (see Eq. (3.7)). Note that potential is
shifted to the surface of the cantilever tip sphere.

• indentationEl <energy factor of LJ interactions>

Type: Float.

Units: kcal/mol.

Status: Optional.

Default value: 1.0.

Purpose: Repulsive energy factor 𝜀𝑡𝑖𝑝 for Lennard-Jones potential (see Eq. (3.7)).

• indentationShowTipSurf <yes/no>

Type: Boolean.

Status: Optional.

Default value: no.

Purpose: Define whether the program should save coordinates of the cantilever tip and base as well as
all the points representing substrate surface in .dcd file together with coordinates of the modeled system
during indentation simulation. Useful for representation purposes. Tip will be represented as two particles
(particle for the cantilever base and particle for the cantilever tip) with chain identificator “T” in .pdb file,
surface particles will have chain identificator “M”.

• indentationTipA / indentationTipB <dimensionless constants>

Type: Float.

Status: Optional.

Default value: 0 and 1, respectively.

Purpose: Shape of the Lennard-Jones potential for the cantilever tip 𝐴𝑡𝑖𝑝 and 𝐵𝑡𝑖𝑝 (see Eq. (3.7), Section
Force indentation simulations).

• indentationTipSigma <range of LJ interactions>

Type: Float.

Units: Å.

Status: Optional.

Default value: indentationSigma.

34 Chapter 6. Input parameters file

SOP-GPU Documentation, Release 2.0

Purpose: Repulsive distance for the cantilever tip Lennard-Jones potential 𝜎𝑡𝑖𝑝 (see Eq. (3.7)). Will
override indentationSigma.

• indentationTipEl <energy factor of LJ interactions>

Type: Float.

Units: kcal/mol.

Status: Optional.

Default value: indentationEl.

Purpose: Repulsive energy factor 𝜀𝑡𝑖𝑝 for the cantilever tip Lennard-Jones potential (see Eq. (3.7)). Will
override indentationEl.

• indentationTipZeta < 𝜁 value for the cantilever tip>

Type: Float.

Status: Optional.

Default value: 5000.0.

Purpose: Friction coefficient for the cantilever tip in viscous environment (see Eq. (3.8) and also section
Units).

• indentationFixTrans <yes/no>

Type: Boolean.

Status: Optional.

Default value:

Purpose: Define if movement of the cantilever tip should be constrained for movement just along the
indentation direction. All the transversal motions will be suppressed.

• indentationCantLength <distance>

Type: Float.

Units: Å.

Status: Optional.

Default value: 500.0 Å.

Purpose: Length of the cantilever for its representation. Makes any difference only if indentation-
ShowTipSurf is enabled.

• indentationDiscreteSurf <yes/no>

Type: Boolean.

Status: Optional.

Default value: no.

Purpose: If enabled, substrate surface will be represented as a set of interacting beads, positioned ac-
cording to the surface representation (parameters indentationSurfaceSize and indentationSurfaceStep).
Otherwise, potential will be continuous (the function fill be computed using the normal vector).

• indentationSurfaceR0 <position vector>

Type: Vector.

Units: Å.

6.9. Force indentation parameters 35

SOP-GPU Documentation, Release 2.0

Status: Required.

Purpose: Position of the substrate surface.

• indentationSurfaceN <direction vector x, y, z>

Type: Vector.

Status: Required.

Purpose: Substrate surface normal vector.

• indentationSurfA / indentationSurfB <dimentionless constants>

Type: Float.

Status: Optional.

Default value: 0 and 1, respectively.

Purpose: Shape of the Lennard-Jones potential for the substrate surface 𝐴𝑠𝑢𝑟𝑓 and 𝐵𝑠𝑢𝑟𝑓 , same as in Eq.
(3.7) for the cantilever tip (see Section Force indentation simulations).

• indentationSurfSigma <range of LJ interactions>

Type: Float.

Units: Å.

Status: Optional.

Default value: indentationSigma.

Purpose: Repulsive distance for the surface Lennard-Jones potential 𝜎𝑠𝑢𝑟𝑓 . Will override indentation-
Sigma.

• indentationSurfEl <energy factor of LJ interactions>

Type: Float.

Units: kcal/mol.

Status: Optional.

Default value: indentationEl.

Purpose: Repulsive energy factor 𝜀𝑠𝑢𝑟𝑓 for the surface Lennard-Jones potential. Will override indenta-
tionEl.

• indentationSurfaceSize <number of points>

Type: Integer.

Status: Optional.

Default value: 51.

Purpose: Number of points in length to represent square substrate surface. Total number of points saved
will be a square value of this.

• indentationSurfaceSizeX / indentationSurfaceSizeY <number of points>

Type: Integer.

Status: Optional.

Default value: 51 and 51.

Purpose: Number of points in length/width to represent rectangular substrate surface. Total number of
points saved will be equal to indentationSurfaceSizeX × indentationSurfaceSizeY.

36 Chapter 6. Input parameters file

SOP-GPU Documentation, Release 2.0

• indentationSurfaceStep <distance>

Type: Float.

Units: Å.

Status: Optional.

Default value: 10 Å.

Purpose: Distance between points representing substrate surface.

• indentationMoveSurface <yes/no>

Type: Boolean.

Status: Optional.

Default value: no.

Purpose: Define whether the substrate surface will be moving along Artem direction, rather than can-
tilever.

• indentationSurfConnectFile <filename>

Type: Path to the file.

Format: .vmd

Status: Optional.

Default value: connect_mica.vmd.

Purpose: Filename of a dump “connect” script that can be used in VMD to show the mica as a surface
rather than set of points.

• indentationPairsCutoff <distance value>

Type: Float.

Units: Å.

Status: Optional.

Default value: 40.0 Å.

Purpose: Cut-off distance for the pairs list if the surface is represented as a set of discreet beads.

• indentationOutput <filename>

Type: Path to the file.

Format: .dat

Status: Optional.

Default value: “indentation.<name>_<author><run>.dat”.

Purpose: Filename for indentation output file.

• indentationOutputFreq <number of steps>

Type: Integer.

Status: Optional.

Default value: 1000.

Purpose: Frequency of writing output of indentation process in the indentationOutput file and on the
terminal screen.

6.9. Force indentation parameters 37

SOP-GPU Documentation, Release 2.0

• indentationRetractionStep <number of a step>

Type: Integer.

Status: Optional.

Default value: -1.

Purpose: If specified, direction of indentation will be reversed on this step.

6.10 Heating parameters

• heating <on/off>

Type: Boolean.

Status: Optional.

Default value: off.

Purpose: Switching on the heating regime with heating parameters.

• initialT <initial temperature>

Type: Float.

Units: kcal/mol.

Status: Required.

Purpose: Initial system temperature.

• deltaT <temperature increment>

Type: Float.

Units: kcal/mol.

Status: Required.

Purpose: Value of the temperature increment that will be added to the initial temperature every tempFreq
steps.

• tempFreq <number of steps>

Type: Integer.

Status: Required.

Purpose: Frequency of updating the temperature.

6.11 Output parameters

• reffilename <filename>

Type: Path to the file.

Format: .pdb.

Status: Optional.

Default value: “<name>.ref.pdb”.

38 Chapter 6. Input parameters file

SOP-GPU Documentation, Release 2.0

Purpose: Name of the reference output file with the coordinated of modeled system as well as cantilever
tip, base and substrate surface if indentation is “on”. This can be used to load structure into VMD.

• outputtiming <number of steps>

Type: Integer.

Status: Optional.

Default value: 10000.

Purpose: Frequency of writing out energy output of simulation process (see Section General output}).

• outputname <filename>

Type: Path to the file.

Format: .dat.

Status: Optional.

Default value: “energy.<name>_<author><run>.dat”.

Purpose: Name of the output file to save resulted energy. If file exists, it will be overwritten.

• outputcolwidth <number of characters>

Type: Integer.

Status: Optional.

Default value: 16.

Purpose: Width of one column in output file, specified in amount of characters.

• printruns <number of trajectories>

Type: Integer.

Status: Optional.

Default value: 10.

Purpose: Number of trajectories for which output energies will be printed out in terminal screen when
many-runs-per-GPU approach is utilized.

• computeRg <yes/no>

Type: Boolean.

Status: Optional.

Default value: no.

Purpose: Specified if program should calculate and print in output file radius of gyration of the modeled
system.

• R_limit_bond <cut-off distance>

Type: Float.

Units: Å.

Status: Optional.

Default value: 8.0 Å.

Purpose: Cut-off radius to calculate the number of survived native contacts in during simulation.

• dcdfreq <number of steps>

6.11. Output parameters 39

SOP-GPU Documentation, Release 2.0

Type: Integer.

Status: Optional.

Default value: 10000.

Purpose: Frequency of writing out structure coordinates in .dcd output file in course of simulation.

• DCDfile <filename>

Type: Path to dcd file.

Status: Optional.

Default value: “<name>_<author><run>.dcd”.

Purpose: Name of dcd file to write coordinates output in. If file exists, it will be overwritten.

• restartfreq <number of steps>

Type: Integer.

Status: Optional.

Default value: 100000.

Purpose: Frequency to save current structure coordinates in .pdb file.

• restartname <filename>

Type: Path to the file.

Format: .pdb.

Status: Optional.

Default value: “<name>_<author><run>_restart”.

Purpose: Extensionless name of the restart files. Only particle coordinates are saved.

• finalcoord <filename>

Type: Path to the file.

Format: .pdb.

Status: Optional.

Default value: “<name>_<author><run>_final.pdb”.

Purpose: Filename for the final coordinates.

Examples of SOP-GPU configurational files can be found here.

40 Chapter 6. Input parameters file

https://github.com/BarsegovGroup/SOP-GPU/tree/master/examples

Bibliography

[Hyeon2006] C. Hyeon, R. I. Dima, and D. Thirumalai (2006) “Pathways and kinetic barriers in mechanical unfolding
and refolding of RNA and proteins”, Structure 14 (11): 1633-1645.

[Mickler2007] M. Mickler, R. I. Dima, H. Dietz, C. Hyeon, D. Thirumalai, and M. Rief (2007) “Revealing the bifur-
cation in the unfolding pathways of GFP using single molecule experiments and simulations”, Proc. Natl. Acad.
Sci. USA 104 (51): 20268–20273.

[Zhmurov2010] A. Zhmurov, R. I. Dima, and V. Barsegov (2010) “Order statistics theory of unfolding of multimeric
proteins”, Biophys. J. 99: 1959.

[Kononova2013a] O. Kononova, L. Jones, and V. Barsegov (2013) “Order statistics inference for describing topolog-
ical coupling and mechanical symmetry breaking in multidomain proteins”, J. Chem. Phys. 139 (12): 121913.

[Ermak1978] D. Ermak and J. A. McCammon (1978) “Brownian dynamics with hydrodynamic interactions”, J.
Chem. Phys. 69 (4): 1352.

[Rotne1969] J. Rotne and S. Prager (1969) “Variational Treatment of Hydrodynamic Interaction in Polymers”, J.
Chem. Phys. 50 (11): 4831-4837.

[Yamakawa1970] H. Yamakawa (1970) “Transport Properties of Polymer Chains in Dilute Solution: Hydrodynamic
Interaction”, J. Chem. Phys. 53 (1): 436-443.

[Geyer2009] T. Geyer and U. Winter (2009) “An 𝑂(𝑁2) approximation for hydrodynamic interactions in Brownian
dynamics simulations”, J. Chem. Phys. 130 : 114905.

[Cieplak2009] M. Cieplak and S. Niewieczerzal (2009) “Hydrodynamic interactions in protein folding”, J. Chem.
Phys. 130 : 124906.

[Frembgen-Kesner2009] T. Frembgen-Kesner and A. H. Elcock (2009) “Striking Effects of Hydrodynamic Interac-
tions on the Simulated Diffusion and Folding of Proteins”, J. Chem. Theory. Comput. 5 : 242-256.

[Zhmurov2011] A. Zhmurov, A. E. X. Brown, R. I. Litvinov, R. I. Dima, J. W. Weisel, and V. Barsegov (2011)
“Mechanism of fibrin(ogen) forced unfolding”, Structure 19 (11): 1615-1624.

[Kononova2013b] O. Kononova, J. Snijder, M. Brasch, J. Cornelissen, R. I. Dima, K. A. Marx, G. J. L. Wuite, W.
H. Roos, and V. Barsegov (2013) “Structural transitions and energy landscape for cowpea chlorotic mottle virus
capsid mechanics from nanomanipulation in vitro and in silico”, Biophys. J. 105 (8): 1893-1903.

[Kononova2014] O. Kononova, Y. Kholodov, K. E. Theisen, K. A. Marx, R. I. Dima, F. I. Ataullakhanov, E. L. Gr-
ishchuk, and V. Barsegov (2014) “Tubulin bond energies and microtubule biomechanics determined from nanoin-
dentation in silico”, J. Am. Chem. Soc. 136 (49): 17036-17045.

[Brooks1983] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan and M. Karplus (1983)
“CHARMM: A program for macromolecular energy, minimization, and dynamics calculations”, J. Comput. Chem.
4: 187-217.

[Haberthur2008] U. Haberthür, A. Caflisch (2008) “FACTS: Fast analytical continuum treatment of solvation”, J.
Comput. Chem. 29: 701-715.

41

SOP-GPU Documentation, Release 2.0

[Zhmurov2010b] A. Zhmurov, R. I. Dima, Y. Kholodov and V. Barsegov (2010) “SOP-GPU: Accelerating biomolec-
ular simulations in the centisecond timescale using graphics processors”, Proteins 78: 2984-2999.

[Press1992] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery. “Numerical Recipes in C”, 2nd ed. The
Art of Scientific Computing, Cambridge University Press, 1992.

[LEcuyer2007] P. L’Ecuyer and R. Simard (2007) “TestU01: A C library for empirical testing of random number
generators”, ACM T. Math. Software. 33: 22.

[Marsaglia1996] G. Marsaglia (1996) “DIEHARD: A battery of tests of Randomness”
(http://stat.fsu.edu/geo/diehard.html).

[Mascagni2000] M. Mascagni and A. Srinivasan (2000) “Algorithm 806: SPRNG: A scalable library for pseudoran-
dom number generation”, ACM T. Math. Software. 26: 436-461.

[Soto1999] J. Soto (1999) “Statistical testing of random number generators” (http://csrc.nist.gov/rng/).

[Zhmurov2011b] A. Zhmurov, K. Rybnikov, Y. Kholodov and V. Barsegov (2011) “Generation of random numbers on
graphics processors: Forced indentation in silico of the bacteriophage HK97”, J. Phys. Chem. B 115: 5278-5288.

[Tsang2000] W. W. Tsang and G. Marsaglia (2000) “The Ziggurat Method for Generating Random Variables”, J. Stat.
Softw. 5.

[Marsaglia1964] G. Marsaglia and T. A. Bray (1964) “A convenient method for generating normal variables”, SIAM
Rev. 6: 260-264.

[Box1958] G. E. P. Box and M. E. Mueller (1958) “A note on the generation of normal random deviates”, Ann. Math.
Stat. 29: 610-611.

[Mascagni2004] M. Mascagni and A. Srinivasan (2004) “Parameterizing parallel multiplicative lagged Fibonacci gen-
erators”, Parallel Comput. 30: 899-916.

[Tausworthe1965] R. C. Tausworthe (1965) “Random numbers generated by linear recurrence modulo two”, Math.
Comput. 19: 201-209.

42 Bibliography

http://stat.fsu.edu/geo/diehard.html
http://csrc.nist.gov/rng/

	Self-Organized Polymer model
	Method
	Benchmark simulations

	Generation of pseudo-random numbers on graphics processors
	Method
	Benchmark simulations

	Using SOP-GPU program
	General output
	Hydrodynamic interactions
	Pulling simulations
	Plane-pulling simulations
	Force indentation simulations
	Heating simulations

	Units
	Topology
	Old sop-top utility
	New sop-top (sop-top2) utility
	Additional covalent bonds
	Topology file
	Parameter for the topology creation

	Input parameters file
	General features
	Device parameters
	Structure parameters
	General simulation parameters
	Force-field parameters
	Pairs lists parameters
	Hydrodynamic interactions parameters
	Pulling parameters
	Force indentation parameters
	Heating parameters
	Output parameters

	Bibliography

